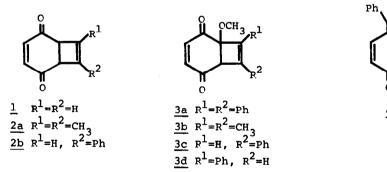
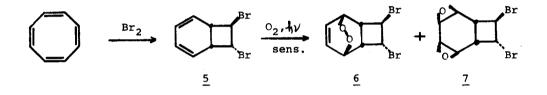
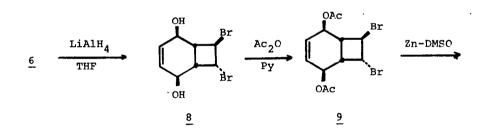
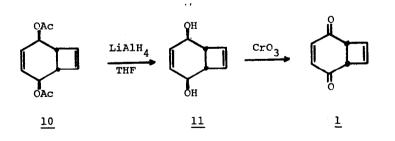
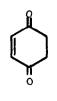
SYNTHESIS OF BICYCLO [4.2.0] OCTA-3,7-DIENE-2,5-DIONE

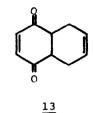
Masaji Oda, Yasutaka Kayama and Yoshio Kitahara^{*} Department of Chemistry, Faculty of Science, Tohoku University Sendai 980, Japan (Received in Japan 20 April 1974; received in UK for publication 30 April 1974)

The bicyclo[4.2.0]octa-3,7-diene-2,5-dione $\underline{1}$ is of interest, since $\underline{1}$ is the valence-bond isomer of 1,4-cyclooctatriene dione (1,4-cyclooctatetraenoquinone) and hence could be a potential precursor for it. Recently Yates and Nair have reported the synthesis of dimethyl and phenyl derivative of $\underline{1}$, $\underline{2a}$ and $\underline{2b}$, via p-benzoquinone-anthracene adducts¹. Other derivatives, 3a-d, have been also prepared by photoaddition of alkynes to methoxy-pbenzoquinone². However, photoaddition of diphenylacetylene to p-benzoquinone has been reported to give the adduct $\underline{4}$, presumably by an intermediacy of oxtene^{3,4}. We here report the synthesis of the parent compound $\underline{1}$ starting from cyclooctatetraene.

COPh


Photo-oxygenation of cyclooctatetraene dibromide 5, trans-7,8-dibromobicyclo[4.2.0]octa-2,4-diene⁵, in acetone using hematoporphyrin as a sensitizer for 47 hrs gave the epidioxide 6 (colorless prisms, mp 106-107°) and the diepoxide 7 (colorless needles, mp 133.5-134.5°) in 78% and 3.5% yield (from COT), respectively. Reduction of 6 with lithium aluminum hydride in tetrahydrofuran gave the diol $\underline{8}$ (colorless needles, mp 135-136°) in 90% yield. $\underline{8}$ was then converted into the diacetate $\underline{9}$ (colorless prisms, mp 89-90°) by treatment with acetic anhydride in pyridine in 90% yield. Attempts to debrominate from $\underline{8}$ with naphthalene-sodium⁶ gave complicate mixtures, however, we could obtain the debrominated product $\underline{10}$ (colorless prisms, mp 69-70°) in quantitative yield by heating of $\underline{9}$ with zinc dust, added with a small amount of iodine, at 90°C in dimethylsulfoxide for 2.5 hrs. Reduction of $\underline{10}$ with lithium aluminum hydride in tetrahydrofuran gave the diol $\underline{11}$ (liquid) in quantitative yield. The desired compound $\underline{1}$ was obtained by oxydation with Jones' reagent (2.2 equivalent) as pale yellow prisms (mp 51-52°) in 66% yield. Thus $\underline{1}$ now can be obtained in 41% overall yield from cyclooctatetraene.



2020

12

Table

Compound	Spectr ir (cm ⁻¹)	al Data (of <u>6</u> - <u>11</u> ¹ H-nmr (ppm) (J Hz) ^C
<u>6</u>	1615, 904, 81 718	3 a	7.10 ddd (8.0, 6.0, 2.0) 1H 6.69 ddd (8.0, 6.0, 2.0) 1H 4.80 m 3H 4.24 m 1H 3.60 m 2H
<u>7</u>	1265, 941, 85 790, 740	4 a	4.68 m 1H 4.21 m 1H 3.55 narrow m 2H 3.18 m 4H
8	3280, 1260, 1 933, 692	.065 ^a	đ
<u>9</u>	1744, 1729 1640	a	6.05 m 2H 5.54 m 1H 5.15 m 1H 4.63 dd (7.5, 1.2) 1H 4.30 d (7.5) 1H 3.00 m 2H 2.09 s 6H
<u>10</u>	1730, 1650 1560, 738	a	6.13 s 2H 5.96 dd (2.8, 1.0) 2H 5.10 m 2H 3.02 narrow m 2H 2.00 s 6H
<u>11</u>	3300, 1640, 1 796, 738,		6.10 narrow m4H4.25 m2H3.45 br. s (OH)2H3.22 s2H
	r disk quid film Cl, at 60 MHz		

c) in CDCl₃ at 60 MHz
d) Good spectrum has not yet been obtained because of low solubility.

The spectral data for $\underline{6} - \underline{11}$ are listed in the table. The stereochemistry (orientation of the four membered ring) of $\underline{6}$ may be *anti* in analogy with the Diels-Alder adducts of cyclooctatetraene⁷. The chemical shift of the bridgehead protons of $\underline{10}$ (§ 3.02) is 0.20 ppm higher than that of <u>11</u> (δ 3.22), indicating the *cis* relationship between the 0-functions and the bridgehead protons and consequently supporting the *anti* configuration of <u>6</u>.

The mass spectrum of $\underline{1}$ shows the molecular ion at m/e 134 (21%) and fragments at m/e 106 (M-CO, 69%) and m/e 78 (benzene, 100%). The ¹H-nmr spectrum (CDCl₃) exhibits three singlets at δ 6.65 (H-3 and 4, J_{13}_{C-H} =167 Hz, J_{H-H} =10.3 Hz from the ¹³C satelites), 6.37 (H-7 and 8, J_{13}_{C-H} =180 Hz, J_{H-H} =2.6, 1.3, 1.0 Hz), and 3.92 ppm (H-1 and 6, J_{13}_{C-H} =146 Hz, J_{H-H} =3.3, 1.3. 1.0 Hz) in the integrated area of 1:1:1. The ir spectrum (KBr) shows a carbonyl band at \vee 1675 cm⁻¹, a conjugated double bond at 1603 cm⁻¹, a cyclobutene at 1560 cm⁻¹, and other significant absorptions at 962, 788, and 690 cm⁻¹. The uv spectrum (EtOH) exhibits λ_{max} 365 (ϵ 97) and 222 nm (11,800). The absorption at 365 nm is 13 nm longer than that of cyclohexene-1,4-dione $\underline{12^8}$ ($\lambda_{max}^{\text{ethanol}}$ 352 (64) and 233 (15,100)) and 5 nm longer than *p*-benzoquinone-butadiene adduct $\underline{13}$ ($\lambda_{max}^{\text{ethanol}}$ 360 (60) and 223 (11,900)¹), which may suggest some spacial interaction of the cyclobutene double bond with the 2-en-1,4-dione chromophore.

The chemistry of 1 is now under active investigation.

References

* To whom all correspondences should be addressed.			
1) P. Yates and G. V. Nair, Synthetic Commun., <u>3</u> 337 (1973)			
2) S. P. Pappas and B. C. Pappas, Tetrahedron Letters, 1597 (1967)			
3) H. E. Zimmerman and L. Craft, Tetrahedron Lett., 2131 (1964)			
4) D. Bryce-Smith, G. E. Fray and A. Gilbert, Tetrahedron Lett., 2137 (1964)			
5) V. Georgian, L. Georgian and A. V. Robertson, Tetrahedron, 19 1219 (1963)			
6) C. G. Scouten, F. E. Barton, Jr., J. R. Burgess, P. R. Story, and J. F.			
Garst, Chem. Commun., 78 (1969)			
7) M. Avram, C. Mateescu and G. D. Nenitzescu, Ann., <u>636</u> , 174 (1960)			

8) E. W. Garbisch, J. Amer. Chem. Soc., <u>87</u>, 4971 (1965)